Publication: Analyzing single cell transcriptome data from severe COVID-19 patients
dc.contributor.author | Nassir, Nasna | |
dc.contributor.author | Tambi, Richa | |
dc.contributor.author | Bankapur, Asma | |
dc.contributor.author | Karuvantevida, Noushad | |
dc.contributor.author | Zehra, Binte | |
dc.contributor.author | Begum, Ghausia | |
dc.contributor.author | Hameid, Reem Abdel | |
dc.contributor.author | Ahmed, Awab | |
dc.contributor.author | Shabestari, Seyed Ali Safizadeh | |
dc.contributor.author | Hachim, Mahmood Yaseen | |
dc.contributor.author | Alsheikh-Ali, Alawi | |
dc.contributor.author | Berdiev, Bakhrom | |
dc.contributor.author | Al Heialy, Saba | |
dc.contributor.author | Uddin, Mohammed | |
dc.date.accessioned | 2023-03-13T04:25:07Z | |
dc.date.available | 2023-03-13T04:25:07Z | |
dc.date.issued | 2022 | |
dc.description.abstract | SUMMARY: We describe the protocol for identifying COVID-19 severity specific cell types and their regulatory marker genes using single-cell transcriptomics data. We construct COVID-19 comorbid disease-associated gene list using multiple databases and literature resources. Next, we identify specific cell type where comorbid genes are upregulated. We further characterize the identified cell type using gene enrichment analysis. We detect upregulation of marker gene restricted to severe COVID-19 cell type and validate our findings using in silico, in vivo, and in vitro cellular models. | en_US |
dc.identifier.other | 204-2022.58 | |
dc.identifier.uri | https://repository.mbru.ac.ae/handle/1/1078 | |
dc.language.iso | en | en_US |
dc.subject | COVID-19 | en_US |
dc.subject | Patients | en_US |
dc.subject | Data | en_US |
dc.subject | Data clustering and analysis | en_US |
dc.subject | Single cell transcriptome | en_US |
dc.title | Analyzing single cell transcriptome data from severe COVID-19 patients | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |