Browsing by Author "Shahzadi, Syeda K."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Publication Reconnoitering the Role of Long-Noncoding RNAs in Hypertrophic Cardiomyopathy: A Descriptive Review(2021) Shahzadi, Syeda K.; Naidoo, Nerissa; Alsheikh-Ali, Alawi; Banerjee, YajnavalkaAbstract: Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy. It is characterized by an unexplained non-dilated hypertrophy of the left ventricle with a conserved or elevated ejection fraction. It is a genetically heterogeneous disease largely caused by variants of genes encoding for cardiac sarcomere proteins, including MYH7, MYBPC3, ACTC1, TPM1, MYL2, MYL3, TNNI3, and TNNT23. Preclinical evidence indicates that the enhanced calcium sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric variations but may also result from secondary mutation-driven alterations. Long non-coding RNAs (lncRNAs) are a large class of transcripts 200 nucleotides in length that do not encode proteins. Compared to coding mRNAs, most lncRNAs are not as well-annotated and their functions are greatly unexplored. Nevertheless, increasing evidence shows that lncRNAs are involved in a variety of biological processes and diseases including HCM. Accumulating evidence has indicated that lncRNAs are dysregulated in HCM, and closely related to sarcomere construction, calcium channeling and homeostasis of mitochondria. In this review, we have summarized the known regulatory and functional roles of lncRNAs in HCM.Publication A Venomics Approach to the Identification and Characterization of Bioactive Peptides From Animal Venoms for Colorectal Cancer Therapy: Protocol for a Proof-of-Concept Study(2021) Shahzadi, Syeda K.; Karuvantevida, Noushad; Banerjee, YajnavalkaBackground: Cancer is the third leading cause of death in the United Arab Emirates (UAE), after cardiovascular diseases and accidents. In the UAE, colorectal cancer (CRC) is the first and fourth most common cancer in males and females, respectively. Several treatment modalities have been employed for cancer treatment, such as surgery, radiotherapy, chemotherapy, hormone replacement therapy, and immunotherapy. These treatment modalities often elicit adverse effects on normal cells, causing toxic side effects. To circumvent these toxicities, there has been an increased impetus towards the identification of alternate treatment strategies. Animal venoms are rich sources of pharmacologically active polypeptides and proteins. Objective: In this proof-of-concept study, we will apply a high-throughput venomics strategy to identify and characterize anticancer bioactive peptides (BAPs) from 20 different animal venoms, specifically targeting CRC. We chose to focus on CRC because it is one of the foremost health issues in the UAE. Methods: In the initial study, we will screen 2500 different peptides derived from 20 different animal venoms for anticancer activity specifically directed against 3 CRC cell lines and two control cell lines employing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay for cytotoxicity. Of the 20 venoms, 3 that exhibit specific and potent anticancer activity directed against the 3 CRC cell lines will be selected; and from these 3 venoms, the specific peptides with anti-CRC activity will be isolated and characterized. Results: This study is at the protocol development stage only, and as such, no results are available. However, we have initiated the groundwork required to disseminate the proposed study, which includes culturing of colorectal cancer cell lines and preparation of venom screens. Conclusions: In summary, the proposed study will generate therapeutic leads to manage and treat one of the leading health issues in the UAE, namely, CRC.